Variational Inference Deep Dive:
Research target: Normalizing flows for posterior approximation
Technical challenges:
- Autoregressive vs. coupling layer architectures for different posterior geometries
- Mode collapse prevention in multi-modal posteriors
- Gradient variance reduction in stochastic variational inference
- Convergence diagnostics when ELBO optimization stagnates
Generate **Insight Note** comparing flow-based VI to MCMC across different model complexities, then **Audio Brief** on choosing between VI approximation families.